Mistral AI Embeddings
Spring AI 支持 Mistral AI 的文本词嵌入模型。词嵌入是文本的向量表示,通过其在高维矢量空间中的位置来捕获段落的语义含义。Mistral AI 词嵌入 API 为文本提供尖端的最新词嵌入,可用于许多 NLP 任务。
Spring AI supports the Mistral AI’s text embeddings models. Embeddings are vectorial representations of text that capture the semantic meaning of paragraphs through their position in a high dimensional vector space. Mistral AI Embeddings API offers cutting-edge, state-of-the-art embeddings for text, which can be used for many NLP tasks.
Prerequisites
你需要使用 MistralAI 创建一个 API,以访问 MistralAI 词嵌入模型。
You will need to create an API with MistralAI to access MistralAI embeddings models.
在 ` MistralAI registration page ` 创建帐户并在 ` API Keys page ` 上生成令牌。
Create an account at MistralAI registration page and generate the token on the API Keys page.
Spring AI 项目定义了一个名为 ` spring.ai.mistralai.api-key
` 的配置属性,您应该将其设置为从 console.mistral.ai
获取的 ` API Key
` 的值。
The Spring AI project defines a configuration property named spring.ai.mistralai.api-key
that you should set to the value of the API Key
obtained from console.mistral.ai.
你可以在` application.properties
`文件中设置此配置属性:
You can set this configuration property in your application.properties
file:
spring.ai.mistralai.api-key=<your-mistralai-api-key>
为了在处理API密钥等敏感信息时增强安全性,你可以使用Spring表达式语言(SpEL)引用环境变量:
For enhanced security when handling sensitive information like API keys, you can use Spring Expression Language (SpEL) to reference an environment variable:
# In application.yml
spring:
ai:
mistralai:
api-key: ${MISTRALAI_API_KEY}
# In your environment or .env file
export MISTRALAI_API_KEY=<your-mistralai-api-key>
你也可以在应用程序代码中以编程方式设置此配置:
You can also set this configuration programmatically in your application code:
// Retrieve API key from a secure source or environment variable
String apiKey = System.getenv("MISTRALAI_API_KEY");
Add Repositories and BOM
Spring AI 工件发布在 Maven Central 和 Spring Snapshot 存储库中。请参阅“添加 Spring AI 仓库”部分,将这些仓库添加到您的构建系统。
Spring AI artifacts are published in Maven Central and Spring Snapshot repositories. Refer to the Artifact Repositories section to add these repositories to your build system.
为了帮助进行依赖项管理,Spring AI 提供了一个 BOM(物料清单)以确保在整个项目中使用一致版本的 Spring AI。有关将 Spring AI BOM 添加到你的构建系统的说明,请参阅 Dependency Management 部分。
To help with dependency management, Spring AI provides a BOM (bill of materials) to ensure that a consistent version of Spring AI is used throughout the entire project. Refer to the Dependency Management section to add the Spring AI BOM to your build system.
Auto-configuration
Spring AI 自动配置、启动器模块的工件名称发生了重大变化。请参阅 upgrade notes 以获取更多信息。 There has been a significant change in the Spring AI auto-configuration, starter modules' artifact names. Please refer to the upgrade notes for more information. |
Spring AI 为 MistralAI 嵌入模型提供 Spring Boot 自动配置。要启用它,请将以下依赖项添加到您项目的 Maven ` pom.xml
` 文件中:
Spring AI provides Spring Boot auto-configuration for the MistralAI Embedding Model.
To enable it add the following dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter-model-mistral-ai</artifactId>
</dependency>
或添加到 Gradle build.gradle
构建文件中。
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-starter-model-mistral-ai'
}
|
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
Embedding Properties
Retry Properties
前缀 ` spring.ai.retry
` 用作属性前缀,允许您配置 Mistral AI 嵌入模型的重试机制。
The prefix spring.ai.retry
is used as the property prefix that lets you configure the retry mechanism for the Mistral AI Embedding model.
Property | Description | Default |
---|---|---|
spring.ai.retry.max-attempts |
Maximum number of retry attempts. |
10 |
spring.ai.retry.backoff.initial-interval |
Initial sleep duration for the exponential backoff policy. |
2 sec. |
spring.ai.retry.backoff.multiplier |
Backoff interval multiplier. |
5 |
spring.ai.retry.backoff.max-interval |
Maximum backoff duration. |
3 min. |
spring.ai.retry.on-client-errors |
If false, throw a NonTransientAiException, and do not attempt retry for |
false |
spring.ai.retry.exclude-on-http-codes |
List of HTTP status codes that should not trigger a retry (e.g. to throw NonTransientAiException). |
empty |
spring.ai.retry.on-http-codes |
List of HTTP status codes that should trigger a retry (e.g. to throw TransientAiException). |
empty |
Connection Properties
spring.ai.mistralai
用作允许你连接到 MistralAI 的属性前缀。
The prefix spring.ai.mistralai
is used as the property prefix that lets you connect to MistralAI.
Property | Description | Default |
---|---|---|
spring.ai.mistralai.base-url |
The URL to connect to |
[role="bare"]https://api.mistral.ai |
spring.ai.mistralai.api-key |
The API Key |
- |
Configuration Properties
嵌入自动配置的启用和禁用现在通过前缀为 Enabling and disabling of the embedding auto-configurations are now configured via top level properties with the prefix 要启用,请将 To enable, spring.ai.model.embedding=mistral (It is enabled by default) 要禁用,请将 To disable, spring.ai.model.embedding=none (or any value which doesn’t match mistral) 此更改旨在允许配置多个模型。 This change is done to allow configuration of multiple models. |
前缀 ` spring.ai.mistralai.embedding
` 是用于配置 MistralAI ` EmbeddingModel
` 实现的属性前缀。
The prefix spring.ai.mistralai.embedding
is property prefix that configures the EmbeddingModel
implementation for MistralAI.
Property | Description | Default |
---|---|---|
spring.ai.mistralai.embedding.enabled (Removed and no longer valid) |
Enable OpenAI embedding model. |
true |
spring.ai.model.embedding |
Enable OpenAI embedding model. |
true |
spring.ai.mistralai.embedding.base-url |
Optional overrides the spring.ai.mistralai.base-url to provide embedding specific url |
- |
spring.ai.mistralai.embedding.api-key |
Optional overrides the spring.ai.mistralai.api-key to provide embedding specific api-key |
- |
spring.ai.mistralai.embedding.metadata-mode |
Document content extraction mode. |
EMBED |
spring.ai.mistralai.embedding.options.model |
The model to use |
mistral-embed |
spring.ai.mistralai.embedding.options.encodingFormat |
The format to return the embeddings in. Can be either float or base64. |
- |
您可以为 ` |
You can override the common |
所有前缀为 |
All properties prefixed with |
Runtime Options
MistralAiEmbeddingOptions.java 提供 MistralAI 配置,例如使用该模型等。
The MistralAiEmbeddingOptions.java provides the MistralAI configurations, such as the model to use and etc.
还可以使用 spring.ai.mistralai.embedding.options
属性配置默认选项。
The default options can be configured using the spring.ai.mistralai.embedding.options
properties as well.
在启动时,使用 ` MistralAiEmbeddingModel
` 构造函数设置用于所有嵌入请求的默认选项。在运行时,您可以使用 ` MistralAiEmbeddingOptions
` 实例作为 ` EmbeddingRequest
` 的一部分来覆盖默认选项。
At start-time use the MistralAiEmbeddingModel
constructor to set the default options used for all embedding requests.
At run-time you can override the default options, using a MistralAiEmbeddingOptions
instance as part of your EmbeddingRequest
.
例如,要覆盖特定请求的默认模型名称:
For example to override the default model name for a specific request:
EmbeddingResponse embeddingResponse = embeddingModel.call(
new EmbeddingRequest(List.of("Hello World", "World is big and salvation is near"),
MistralAiEmbeddingOptions.builder()
.withModel("Different-Embedding-Model-Deployment-Name")
.build()));
Sample Controller
这将创建一个 EmbeddingModel
实现,您可以将其注入到您的类中。这是一个使用 EmbeddingModel
实现的简单 @Controller
类的示例。
This will create a EmbeddingModel
implementation that you can inject into your class.
Here is an example of a simple @Controller
class that uses the EmbeddingModel
implementation.
spring.ai.mistralai.api-key=YOUR_API_KEY
spring.ai.mistralai.embedding.options.model=mistral-embed
@RestController
public class EmbeddingController {
private final EmbeddingModel embeddingModel;
@Autowired
public EmbeddingController(EmbeddingModel embeddingModel) {
this.embeddingModel = embeddingModel;
}
@GetMapping("/ai/embedding")
public Map embed(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
var embeddingResponse = this.embeddingModel.embedForResponse(List.of(message));
return Map.of("embedding", embeddingResponse);
}
}
Manual Configuration
如果您不使用 Spring Boot,可以手动配置 OpenAI 嵌入模型。为此,请将 spring-ai-mistral-ai
依赖项添加到您项目的 Maven pom.xml
文件中:
If you are not using Spring Boot, you can manually configure the OpenAI Embedding Model.
For this add the spring-ai-mistral-ai
dependency to your project’s Maven pom.xml
file:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-mistral-ai</artifactId>
</dependency>
或添加到 Gradle build.gradle
构建文件中。
or to your Gradle build.gradle
build file.
dependencies {
implementation 'org.springframework.ai:spring-ai-mistral-ai'
}
|
Refer to the Dependency Management section to add the Spring AI BOM to your build file. |
|
The |
接下来,创建一个 MistralAiEmbeddingModel
实例并使用它来计算两个输入文本之间的相似度:
Next, create an MistralAiEmbeddingModel
instance and use it to compute the similarity between two input texts:
var mistralAiApi = new MistralAiApi(System.getenv("MISTRAL_AI_API_KEY"));
var embeddingModel = new MistralAiEmbeddingModel(this.mistralAiApi,
MistralAiEmbeddingOptions.builder()
.withModel("mistral-embed")
.withEncodingFormat("float")
.build());
EmbeddingResponse embeddingResponse = this.embeddingModel
.embedForResponse(List.of("Hello World", "World is big and salvation is near"));
MistralAiEmbeddingOptions
提供了嵌入式请求的配置信息。该选项类提供了 builder()
以便于创建选项。
The MistralAiEmbeddingOptions
provides the configuration information for the embedding requests.
The options class offers a builder()
for easy options creation.